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Bachelor of Science (B.Sc.) Semester—III
Examination

MATHEMATICS
(M6–Differential Equations & Group Homomorphism)

Paper—VI

Time—Three Hours] [Maximum Marks—60

N.B. :— (1) Solve all the FIVE questions.
(2) All questions carry equal marks.
(3) Question Nos. 1 to 4 have an

alternative. Solve each question in full
or its alternative in full.

UNIT—I
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(D) Prove that the intersection of two normal subgroups
of a group is a normal subgroup. 6

Question—V
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(B) Prove that ∫
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(C) Show that L(1) = 1/s, s > 0. 1½

(D) Find the Laplace transform of f(t) = (3e2t – 4)2.
1½

(E) Solve y" + a2y = 0 with y(0) = 1and y'(0) = 0,
where y = y(t). 1½

(F) Find the Fourier transform of e–x. 1½

(G) Prove that every subgroup of an abelian group is
normal. 1½

(H) Let G be the multiplicative group of all positive reals
and G', the additive group of reals. Show that the
mapping f : G → G' defined by f(x) = log x, ∀ x ∈ G,
is homomorphism. 1½
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UNIT—II
2. (A) If a and b are any constants, f and g are functions

of t, t > 0, then prove that :
L [a f(t) + b g(t)] = a L(f(t)) + b L (g(t)).

Hence find L [sin 3t cos t]. 6
(B) If L (f(t)) = F(s), then prove that L [eatf(t)] = F(s – a).

Hence find L [e–4t (sin 5t + 3 cos 2t)]. 6

OR

(C) If L–1(F(s)) = f(t) and L–1(G(s)) = g(t), then prove
that :
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property. 6
UNIT—III

3. (A) Solve x' + 5x + 2y = t, y' + 2x + y = 0, x(0) = 0,
y(0) = 0, where x = x(t), y = y(t). 6
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(C) Find the Fourier sine transform of 0,
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6
(D) Let u(x, t) be a function defined for t > 0 and

x ∈ [a, b]. Show that :
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where U = U(x, s) = L [u(x, t)]. 6
UNIT—IV

4. (A) If f : G → G' be a homomorphism of a group G into
a group G'. Then prove that the kernel K of f is a
normal subgroup of G. 6

(B) Show that the mapping f : C → R such that
f(x + iy) = x is a homomorphism of the additive
group C of complex numbers onto the additive group
R of real numbers. Find the kernel of f. 6

OR
(C)  Prove that every homomorphic image of a group G

is isomorphic to some quotient group of G. 6
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